

Project Overview: Goals and Objectives

 Primary goal: To execute a large-scale scale CO₂ injection test to evaluate best practices and technologies required to implement carbon sequestration

北京

ARCSI

NETL

3

- Objectives are to advance operational, monitoring, and modeling techniques needed to:
 - Develop and validate reservoir models useful for commercial scale applications
 - Address public concerns such as leakage and storage security
 - Address other topics such as cost effectiveness and CCUS practicability

Ballelle The Boston of Laurentin

MRCSP Suppor	ts DOE Program Goals
DOE Program Goal	MRCSP Approach/Benefit
Predict CO_2 storage capacity in geologic formations to within $\pm 30\%$	Geologic and reservoir characterization and models correlated with field monitoring combined with MRCSP regional mapping.
Demonstrate that 99% of CO_2 remains in the injection zones	Operational accounting for CO_2 during EOR Monitoring options to track and image plume, and monitor CO_2 storage and retention
Improve reservoir storage efficiency while ensuring containment effectiveness	Test in EOR fields in various stages of their life cycle and examine strategies for utilizing the pore space created by the oil production
Development of Best Practices Manuals (BPMs)	Contribute to BPMs through large-scale test and regional analysis across MRCSP
4 NETL	Balifelie Zie Bonizan of Lamovation

RCSP GC	als and MRCSP Program
RCSP Goal	MRCSP Success Criteria
Goal 1 – Prove Adequate Injectivity and Available Capacity	 Success measured by injecting 1 million tonnes of CO₂ in CO₂-EOR fields within permitted reservoir pressures Pressure analysis and modeling used to evaluate capacity
Goal 2 – Prove Storage Permanence	 Site selection to include good caprock, geologic structure Seismic and well data used to evaluate storage mechanisms and containment Monitoring wells used to measure containment over time within the reef and immediate caprock
Goal 3 – Determine Aerial Extent of Plume and Potential Leakage Pathways	 Monitoring portfolio employed to image and track the lateral and vertical plume migration. Success measured by using monitoring data to compare to and validate plume models
5 NETL	Bailette Zha Boutrage of Issuevation 5

Γ

RCSP Goals	and MRCSP Program
RCSP Goal	MRCSP Approach and Success Criteria
Goal 4 – Develop Risk Assessment Strategies	 Risk assessment for events, pathways, and mitigation planning Success will be measured by comparing predicted to actual field experience for all stages of the project
Goal 5 – Develop Best Practices	 Phase III builds on Phase II best practices in siting, risk management, modeling, monitoring, etc. Key emphasis is on operation and monitoring and scale-up to commercial-scale
Goal 6 – Engage in Public Outreach and Education	 Extensive outreach efforts for both Phase II and Phase III sites as well as technology transfer and sharing
6 NETL	Bailetie Zie Benissen of Issuevetien

MRCSP Si	RCSP Scope of Work Structured Around x Tasks
Task 1	Regional Characterization: Develop a detailed actionable picture of the region's geologic sequestration resource base
Task 2	Outreach: Raise awareness of regional sequestration opportunities and provide stakeholders with information about CO_2 storage
Task 3	Field Laboratory Using Depleted EOR Field: Pressurize a depleted oil field with CO_2 injection to test monitoring technologies and demonstrate storage potential
Task 4	CO ₂ Storage Potential in Active EOR Fields: Monitor CO ₂ Injection and recycling in active EOR operations with different scenarios
Task 5	$\rm CO_2$ Injection in New EOR Field(s): Monitor $\rm CO_2$ injection into an oil field that has not undergone any $\rm CO_2$ EOR to test monitoring technologies and demonstrate storage potential
Task 6	Program Management
7	L Ballele Zie Badroge / Lesevation

		-			_
Monitoring	Status	for	Late	Stage	Reef

A portione of teermologies is being tester	Α	portfolio	of	technol	logies	is	being	tested	ł
--	---	-----------	----	---------	--------	----	-------	--------	---

MRCSP

Activity	Before Injection	Early Injection	Mid Injection	Late Injection	After Injection
CO ₂ flow		Х	Х	Х	
Pressure and temperature		х	х	х	х
Wireline logging	Х		Х		Х
Borehole gravity	Х				Х
Fluid sampling	Х		Х		Х
Vertical seismic profile	Х				Х
Microseismic	Х			Under	planning
Satellite radar	х	х	Х	х	Х
essons learned will be	applied to	design the	MVA plan for	the newly	targeted fie
NETL					Ballelle

				2.7		
Inputs						
inputs.			Outp	uts at Single Point	of Pres	ssure:
Shadding Indicates New	eded input					
Input Bubble Point P	roperty		-	Pressure, p	1250	psia
Select Known Bubble Point Property :	2017.0	ressure	At:	Bubble Point Pressure, p _B	2017	psia
Pressure, po	2017.0	psa		Solution Gas Oil Ratio at Bubble Pt, R ₅₀₈	774	SCF/BBL
Additional Reservoir F	roperties					
Oil gravity, van	43.6	API		Formation Volume Factor, B _o	1.21	RB/STB
Gas gravity, y.	0.76		10000	Solution Gas Oil Ratio, R _{so}	439.2	SCF/BBL
Reservoir Temperature, T	108	*F	Oil-Gas	Viscosity, µ _o	0.466	cP
				Compressibility, c ₈	3.41E-04	1/psi
Single Point Pressure	of Interest			Density, p _o	45.2	lbm/ft3
Evaluation at right				Formation Volume Factor, Bg	0.0103	ft3/SCF
Pressure, p	1250	psia		deviation factor, Z	0.802	
Descence Dames of Interact			Gas	Viscosity, µg	0.014	cP
Pressure Range of I	nterest			Compressibility, c _g	9.57E-04	1/psi
See next sheets for table	s and plots			Density, pg	5.64	lbm/ft3
Maximum Pressure	2894	psia		Formation Volume Factor, B _w	1.0097	RB/STB
Min Pressure	15	psia		Solution Gas Water Ratio, R _{sw}	15.31	SCF/BBL
Bring Gas Calcula	tions		Brine-Gas	Viscosity, µ _w	0.64	cP
Colculate Brine Care Premertier?	tions	Mark		Compressibility, c _w	5.04E-05	1/psi
If Yes Salinity =	17	Weight % Solide		Density, p _w	62.29	lbm/ft3
n res, samney =	A.4	weight is abilds		Formation Volume Factor, B _{CO2}	0.01	ft3/SCF
CO. Calculation				Viscosity, µcoa	0.03	ср
coj calculato	1.0	Mar	Pure CO ₂	Density, pcoz	21.88	lbm/ft3
Calculate Pure CO ₂ , CO ₂ -Oil and CO ₂ -Brine Properti	es?	Yes		Compressibility Factor, Zroz	0.43	
*Pure COZ properties only available for 100psia	≤p≤ 3600psia ar	a 0°F ≤ T ≤ 350°F		CO2-Oil Solubility, Sol	0.60	mole fraction
-coz-oil and Co ₂ -Brine Calculatio	ins assume dead	OII		Solution CO2 Oil Batio Barrow	740.8	SCE/STB
if Yes, Avg. Oil Molecular Weight (MW) =	220	ID/IDMOI	CO ₂ - Oil	CO Oil Swelling SE	1.30	56.7510
If Yes, Salinity =	1.5	Weight % Solids		CO_OII Vistasite Patia	1.43	-
				CO2-OII VISCOSITY Ratio, μ _{eCO2} /μ _{ei}	0.23	

- 1. Continue to be a neutral and credible source of scientific information on CCUS
- 2. Improve public understanding of CCUS
- 3. Support the large-volume CO₂ injection test
- 4. Support other MRCSP research activities, including regional geologic characterization projects

NETL

63

	MRCSP Phase III Schedule Yer	ır	2	012		20)13		20)14	T		201	5	2016	2017	2018	20
No.	Task Quarter	1	2	3	4	1 2	3 4	1	2	3	4	1	2	3 4				
1.0	Denie wel Cherne denie die w	_	-		50.0	V C-												
1.0	Regional Characterization	_	+		50	% C0	mpiele	9			-					1		
2.0	Outreach				50 ^o	% Co	mplete	e				\			•	•		
3.0	Reservoir Studies in Depleted Niggaran Reefs	+			80.9	% Co	mplete										-	<u> </u>
5.0	NEPA EO and Site Workplan	+	+	-	00	/0 00	mpiere				1							
-	Advanced Geological Characterization	+	+			_		_					_					
	Reservoir Modeling and Analysis	+	+-	-					-		-	-		-			-	1
	CO ₂ Injection	+	+			•												
	Monitoring and Analysis	1	1			Č			_						-		1	-
	Site Transfer	+	+															
4.0	D		_		-60.0	¥ Co	moloto											L
4.0	Keservoir Studies in Active Magaran Reets	+-	+		00-	% Cu	mpiete	9			1				1	1	T	
	NEPA EQ and Site workplan	+	1		-			_										L
	CO. Injection and Mass Balance	+	+				_			_	_	_	_	_	_			_
	Monitoring and Analysis	_		-					_		_							_
	Monitoring and Analysis	+	+					-	1		1	-			1	1	T	
5.0	Reservoir Studies New Niagaran Reefs A&B				5 %	Con	nplete											
	Site Characterization Plan (Reefs A&B)	Τ						A				B						
	Advanced Geological Characterization]							Að	¢В								
	Reservoir Modeling and Analysis	1							Að	¢В	_							
	CO ₂ Injection (Reefs A&B)										A			0	В			
	Monitoring and Analysis												A&	В				
	Site Transfer										A				В			
6.0	Project Management	+		5	0%0	Com	olete						1		-		-	-
0.0	r toject klanagenen															T		
7.0	Deep Saline Formation Activities			2	0% 0	Comp	lete											
6908	Document and Close St. Peter SS Well	-l ,															Τ	

